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Abstract. The usual phenomenology of the complex formed by a neutral flavoured meson M0 and its
antiparticle M̄0 assumes the absence of vacuum regeneration in this complex. We propose experiments
for determining the two amplitudes of (possibly non-zero) vacuum regeneration: (i) a comparison of the
time dependence of decays of the M0 and M̄0 into a channel which could be a CP -eigenstate (e.g.,
π+π− or π0π0π0), or a general channel like πlν; (ii) a measurement of the ratio of the time-dependent
transmutations, (M0 → M̄0) and (M̄0 → M0); (iii) a measurement of the ratio of the time-dependent
probabilities for the production of |M0M0〉 and |M̄0M̄0〉 states, starting with a C-odd correlated |M0M̄0〉
state like the φ-meson. The proposed experiments are required to be as accurate as those for the known
CP -violation effects in the (M0, M̄0) complex.

1 Introduction

The complex formed by a neutral flavoured meson M0

(i.e., K0, D0, B0
d, B

0
s ) and its antiparticle M̄0 is known to

be suitable for studying violations of the discrete symme-
tries CP , T and CPT , and for looking for new physics
beyond the standard model; for recent reviews, see [1, 2].
Because of the importance of the conclusions arising out
of these investigations, it is highly desirable to use, as a
basis, a phenomenology which is as model independent
as feasible. The commonly employed phenomenology is
based on the Weisskopf–Wigner approximation (abbrevi-
ated henceforth as WWA); for a review, see [3]. Being an
approximation, the WWA cannot provide an exact the-
ory; see, e.g., [4, 5]. In the WWA, the two flavour states
|M0〉 and |M̄0〉 are linearly superposed to form two “mass
eigenstates” which propagate, in time, independently of
each other. In other words, when left to itself, one mass
eigenstate does not convert into the other, i.e., there is
“lack of vacuum regeneration” (abbreviated henceforth as
LVR). The LVR property of the WWA leads to a lot of
simplification. Some tests of the LVR are known [5–10].

Using general principles, Khalfin showed [5], through
his “Main Theorem, part (A)”, that the LVR cannot be
correct; see also [11]. He predicted a “new CP -violation
effect” arising from violations of the LVR. However, his
estimate of this new effect was theoretically found [12] to
be too large by many orders of magnitude.

In the final analysis, the true size of possible LVR
violations must be determined experimentally. The pur-
pose of the present paper is to propose experiments for
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determining the two (complex and time-dependent) am-
plitudes of vacuum regeneration. While our discussion is
explicitly meant for the neutral kaon choice for M0, our
considerations are easily generalised to the other choices.
Needless to say, the present data are consistent with the
phenomenology which incorporates the LVR.

The plan of this paper is as follows. In Sect. 2 is given
the formalism for describing the LVR and its possible vi-
olations. Section 3 reviews the existing tests of the LVR.
Section 4 describes the experiments we propose for deter-
mining the two amplitudes of vacuum regeneration; these
correspond to the tests of Sect. 3. A summary and some
discussion of our results is given in the last section. We
shall allow violation of CP -, T - and CPT -invariances to
occur throughout.

2 The formalism for describing violations
of the LVR

As mentioned above, we choose M0 = K0 for our ex-
plicit discussion; the generalisation to other choices for
M0 is straightforward. Let us superpose the flavour states
|K0〉 and |K̄0〉 to form two independent normalised states
|K1,2〉 by using the complex constants pS,L and qS,L:

|K1〉 = pS|K0〉 + qS|K̄0〉,
|K2〉 = pL|K0〉 − qL|K̄0〉, (1)

with

|pS|2 + |qS|2 = 1 = |pL|2 + |qL|2 . (2)
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The above transformation is invertible:

|K0〉 = (qL|K1〉 + qS|K2〉)/d,
|K̄0〉 = (pL|K1〉 − pS|K2〉)/d, (3)

where d = pSqL + pLqS. If we define the general probabil-
ity amplitudes for the time-dependent transitions |K0〉 →
|K0〉, |K0〉 → |K̄0〉, |K̄0〉 → |K0〉 and |K̄0〉 → |K̄0〉 re-
spectively as a(t), b(t), b̄(t) and ā(t), where t is the proper
time, the general time dependence of the states |K1,2〉 is
given by

|K1〉 → ΘS(t)|K1〉 +DSL(t)|K2〉,
|K2〉 → DLS(t)|K1〉 +ΘL(t)|K2〉, (4)

where the functions ΘS,L, DSL and DLS are given by [5, 10]

ΘS +ΘL = a+ ā, (5a)
ΘS −ΘL = [(a− ā)(pSqL − qSpL) + 2bpSpL + 2b̄qSqL]/d,

(5b)
DSL = [(a− ā)pSqS − bpSpS + b̄qSqS]/d, (5c)
DLS = [(a− ā)pLqL + bpLpL − b̄qLqL]/d. (5d)

Because of (2), only six real parameters determine pS,L
and qS,L. Out of these, only three are significant [1–3]. We
shall choose these by using the Eberhard convention [13]

pS = eiθ/2CosαS, qS = e−iθ/2SinαS,

pL = e−iθ/2CosαL, qL = eiθ/2SinαL, (6)

where the real parameters αS,L and θ lie in the ranges

0 ≤ αS,L ≤ π

2
, −π

2
≤ θ ≤ +

π

2
. (7)

In view of the known smallness of the CP -violation, one
would like the experimentally interesting superpositions
|K1,2〉 to depart only slightly from the CP -eigenstates:

|K±〉 =
1√
2
[|K0〉 ± |K̄0〉], (8)

where we have used the definitions

CP |K0〉 = |K̄0〉, CP |K̄0〉 = |K0〉. (9)

In this situation one may retain the CP -violating param-
eters implied in (6) up to only the first order. Then, one
finds

|K1〉 =
1√
2

[(
1 +

σ − δ + iθ
2

)
|K0〉

+
(

1 − σ − δ + iθ
2

)
|K̄0〉

]

|K2〉 =
1√
2

[(
1 +

σ + δ − iθ
2

)
|K0〉

−
(

1 − σ + δ − iθ
2

)
|K̄0〉

]
(10)

where θ and the two combinations

σ =
π

2
− (αS + αL), δ = (αS − αL) (11)

would vanish in the limit of CP -invariance; we shall retain
θ, σ and δ up to only the first order.

Now let us consider the WWA. Here, the characteris-
tic property is the introduction of two states |KS,L〉 which
propagate, in time, independently of each other; the “vac-
uum regeneration” transitions |KS〉 → |KL〉 and |KL〉 →
|KS〉 are absent. In terms of (4), the special cases |KS,L〉
of, respectively, |K1,2〉 are defined through the time de-
pendence

|KS〉 → ΘS(t)|KS〉,
|KL〉 → ΘL(t)|KL〉, (12)

whereby the states |KS,L〉 become “mass eigenstates” with
complex masses λS,L:

ΘS,L = exp(−itλS,L),

λS,L = mS,L − i
2
γS,L, (13)

where mS,L and γS,L are the usual masses and decay
widths for the propagation states |KS,L〉. In the WWA,
for the states |KS,L〉,

DSL = 0 = DLS, (14)

which is the LVR, with its characteristic predictions [14]

ā− a = βb, (15a)
b̄ = αb, (15b)
b = (ΘS −ΘL)qSqL/d, (15c)

α =
pSpL

qSqL
, β =

(
pL

qL
− pS

qS

)
. (15d)

Our purpose is to propose experiments for determin-
ing the amplitudes DSL and DLS of vacuum regeneration.
Without the LVR, the four independent amplitudes are
(ΘS ±ΘL), DSL and DLS, equivalent to the counting a, b, b̄
and ā; see (5). With the LVR, one has only (ΘS ± ΘL)
which suffice because of (5a) and (15). For the mixing pa-
rameters, there is no formal change in going from |K1,2〉
to |KS,L〉; (1)–(3), (6), (7), (10) and (11) written for the
|K1,2〉 apply also to the |KS,L〉 case. Then, the |KS〉(|KL〉)
is the short-lived (long-lived) state which is predominantly
CP -even (CP -odd).

It is useful to write DSL and DLS in the Eberhard
convention:

DSL −DLS = (b̄− b) − σ(b+ b̄), (16a)
DSL +DLS = (a− ā) + (δ − iθ)(b+ b̄). (16b)

Because of (9), CP -invariance directly gives

ā = a, b̄ = b. (17)

Also, θ, σ and δ parameterise CP -violation in mixing; see
(8)–(11). Therefore, (16) show that the amplitudes DSL
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and DLS are of first order in CP -violation. Henceforth, all
CP -violations will be retained up to only the first order. If
DSL and DLS vanish due to LVR, one gets the usual WWA
results of (15a), (15b) and (15d), stated in the Eberhard
convention as

b̄ = (1 + 2σ)b, (18a)
(ā− a) = 2(δ − iθ)b, (18b)

since now,

α = 1 + 2σ, β = 2(δ − iθ). (19)

3 Some existing tests of the LVR

We shall list existing tests for the situation when the final
state arises from the flavour states |K0〉 and |K̄0〉, and,
secondly, when the final state consists of physical decay
channels (e.g. π+π−, π0π0π0 and πlν). In both cases, we
shall take the initial state to be either the flavour states
K0 and K̄0 themselves (here, only one time is involved),
or the C-odd state (e.g., the φ-meson):

|−〉 =
1√
2
|K0K̄0 − K̄0K0〉, (20)

wherein two time variables will be involved.
Firstly, the one-time case. The t independence of the

ratio ∣∣b̄/b∣∣2 = |α|2 (21)

following from (15b) is known [7, 8, 15] as a test of reci-
procity. Correspondingly, the bounds [16]

− |β| ≤
∣∣∣ ā
b

∣∣∣− ∣∣∣a
b

∣∣∣ ≤ + |β| (22)

follow from (15a); however, these bounds are not use-
ful equality-type tests. Coming to the situation when the
physical channel k forms the final state, and the flavour
states K0 and K̄0 form the initial state, one writes the
decay rate into k as

Rk
±(t) = ak

± |ΘS(t)|2 + bk± |ΘL(t)|2 + 2Re(ck±Θ
∗
LΘS), (23)

where the subscripts ± refer to the initial K0 and K̄0

states respectively. Then LVR gives [6, 17]

ak
+/a

k
− = 1 − 2(σ + δ), (24a)

bk+/b
k
− = 1 − 2(σ − δ), (24b)

ck+/c
k
− = −(1 − 2σ + 2iθ), (24c)

which holds for any general channel k like πlν. In case one
has a CP -even decay channel (e.g., π+π−), (23) predicts
the corresponding decay rates to have the time depen-
dences

Reven
± →

∣∣∣∣ΘS

(
1 ∓ σ + δ − iθ

2

)
± ηΘL

∣∣∣∣
2

, (25a)

where η is the CP -violating ratio of the constant ampli-
tudes of KL and KS decays into the chosen CP -even chan-
nel; this gives the t dependence

(Reven
+ −Reven

− ) → Re(ηΘLΘ
∗
S) − 1

2
(σ + δ) |ΘS|2 . (25b)

If the decay channel chosen is CP -odd (e.g., π0π0π0), one
gets the corresponding results

Rodd
± →

∣∣∣∣ΘSχ±ΘL

(
1 ∓ σ − δ + iθ

2

)∣∣∣∣
2

, (26a)

(Rodd
+ −Rodd

− ) → Re(Θ∗
sχ

∗ΘL) −
(
σ − δ

2

)
|ΘL|2 , (26b)

where χ is the CP -violating ratio of the constant am-
plitudes of KS and KL decays into the chosen CP -odd
channel.

For decays of the state |−〉 at rest, we consider the
probability asymmetry [9, 18]

A(t1, t2) =
P (t1, t2) − P̄ (t1, t2)
P (t1, t2) + P̄ (t1, t2)

, (27)

where P is the probability for detection of the first K0

at time t1 and the second K0 at time t2, and P̄ is the
probability for detection of the first K̄0 at time t1 and the
second K̄0 at time t2. Using the general formulas

P (t1, t2) =
1
2

∣∣a(t1)b̄(t2) − b̄(t1)a(t2)
∣∣2 , (28a)

P̄ (t1, t2) =
1
2

|b(t1)ā(t2) − ā(t1)b(t2)|2 , (28b)

one finds the LVR test [5, 9, 18] following from (15a) and
(15b):

A(t1, t2) =
|α|2 − 1
|α|2 + 1

Eberhard
convention

→ 2σ, (29)

which is independent of both t1 and t2, and equals the
asymmetry

B(t) =

∣∣b̄∣∣2 − |b|2∣∣b̄∣∣2 + |b|2
=

|α|2 − 1
|α|2 + 1

(30)

of the one-time case; see (21). For decays of the state |−〉
at rest into physical channels f, g at times t1 and t2 re-
spectively, one writes, using [10] the closed nature of the
[(K0, K̄0) ↔ (KS,KL)] system the decay rate

R(f, t1; g, t2) =
1
2

∣∣∣∣(a(t1)b̄(t2) − b̄(t1)a(t2))AfAg

+ (b(t1)ā(t2) − ā(t1)b(t2))Āf Āg

+
(
a(t1)ā(t2) + b(t1)b̄(t2)

− ā(t1)a(t2) − b̄(t1)b(t2)
)1

2
(Af Āg + ĀfAg)

+
(
a(t1)ā(t2) − b(t1)b̄(t2)

+ ā(t1)a(t2) − b̄(t1)b(t2)
)1

2
(Af Āg − ĀfAg)

∣∣∣∣
2

, (31)
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which leads to the factorised time dependence [10]

R(f, t1; g, t2) =
1
2

|a(t1)b(t2) − b(t1)a(t2)|2

× ∣∣αAfAg − Āf Āg − βAf Āg

∣∣2 (32)

for the situation in which the condition

Af Āg − ĀfAg = 0 (33)

holds, if the LVR relations of (15a) and (15b) are used;
here the transition amplitudes are defined by

Af,g = 〈f, g |T |K0〉, Āf,g = 〈f, g |T | K̄0〉. (34)

The LVR test is the universality of the dependence of
R(f, t1; g, t2) on t1 and t2, as given in (32), for every f
and g satisfying (33).

4 Experiments for determining the amplitudes
DSL and DLS of vacuum regeneration

We now want to see how the tests of Sect. 3 are modified
if non-zero vacuum regeneration amplitudes are allowed.
The analysis is based on (5) and (16). One obtains

b̄/b = α+H(t), (35a)
(ā− a)/b = β + F (t), (35b)

where

H(t) = 2(DLS −DSL)/(ΘL −ΘS),
F (t) = 2(DLS +DSL)/(ΘL −ΘS),

instead of (15a) and (15b). Thus the LVR results of (21)
and (22) are replaced by

∣∣b̄/b∣∣2 = |α|2 + 2ReH(t), (36a)

− |β + F (t)| ≤
∣∣∣ ā
b

∣∣∣− ∣∣∣a
b

∣∣∣ ≤ + |β + F (t)| . (36b)

Therefore, some information on (DSL − DLS), in terms
of (ΘS − ΘL), may be obtained from experimental data
on (b̄/b)2, but the bounds (36b) are not equally useful.
The new point is the time dependence of the ratio

∣∣b̄/b∣∣2,
and of the bounds (36b). Consequently,

∣∣b̄/b∣∣2 can have
its reciprocity value (= 1) at a certain time t even though
the structural constant σ is non-zero, in contrast to the
prediction from (19) and (21). Similarly, |ā/a| can have its
CPT -invariance value (= 1) even though β is non-zero;
contrast this with the bounds of (22).

For the tests of (24), one now obtains

ak
+/a

k
− = 1 − 2(σ + δ) + 4Re(DLS/ΘS), (37a)

bk+/b
k
− = 1 − 2(σ − δ) + 4Re(DSL/ΘL), (37b)

ck+/c
k
− = −

[
1 − 2σ + 2iθ + 2

(
DLS

ΘS
+
(
DSL

ΘL

)∗)]
,(37c)

where the new point is the time dependence on the right-
hand sides of (37) which show how some information on
DLS (in terms of ΘS) and DSL (in terms of ΘL ) may be
obtained from experimental data on the ratios (ak

+/a
k
−),

(bk+/b
k
−) and (ck+/c

k
−) for any general k (e.g., πlν) which

is not a CP -eigenstate. It is worth noting that the coef-
ficients ak

±, b
k
± and ck± of (23) would be constants (as in

the LVR framework) if there is no CP -violation, but their
(supposedly small) CP -violating parts now have a time
dependence due to DSL and DLS.

Now consider the “charge asymmetry AL (in the nota-
tion of [17]) in the semileptonic decays of a KL beam”. A
priori, this asymmetry is not well defined because vacuum
regeneration does not allow one to think of a KL beam.
However, if one defines AL in terms of the bk± (now, time
dependent) of (23) as (see, e.g., [17])

AL = (b++ − b−+)/(b++ + b−+),

where the superscript indicates the leptonic charge in the
πlν decay channel, it is easy to see that the new AL de-
rived from an arbitrary initial incoherent mixture of K0

and K̄0 beams is the same as that derived from an initial
K0 beam, as was true also without vacuum regeneration.
This is because the right-hand side of (37b) is indepen-
dent of the channel k, even in the presence of vacuum
regeneration. Similarly, the new AL has, in form, the old
(i.e., without vacuum regeneration) constant value (see,
e.g., [17]) in terms of σ, δ and the constant amplitude pa-
rameters for πlν decays, because the relation between the
new and the old bk+ is independent of k. Thus AL does not
provide useful information on DSL and DLS.

For a CP -even decay channel like π+π−, the results of
(25a) and (25b) are replaced by

Reven
± →

∣∣∣∣ΘS

((
1 ∓ σ + δ − iθ

2

)
± DLS

ΘS

)
± ηΘL

∣∣∣∣
2

,

(38a)

Reven
+ −Reven

− → Re(ηΘLΘ
∗
S) − |ΘS|2

(
σ+δ

2
−Re

DLS

ΘS

)
,

(38b)

which can give information on DLS in terms of ΘS. The
CP -odd decay channels like π0π0π0 give the correspond-
ing information on DSL in terms of ΘL because the results
of (26a) and (26b) now get replaced by

Rodd
± →

∣∣∣∣ΘSχ±ΘL

(
1 ∓ σ − δ + iθ

2
± DSL

ΘL

)∣∣∣∣
2

, (39a)

Rodd
+ −Rodd

− → Re(Θ∗
Sχ

∗ΘL) − |ΘL|2
(
σ − δ

2
−Re

DSL

ΘL

)
.

(39b)

In the general situation wherein vacuum regeneration
is allowed, we shall express, because of (5), the complete
set of flavour-transition amplitudes as ΘS, ΘL, ψ and ρ
where

ψ(t) = DSL(t)/ΘL(t), ρ(t) = DLS(t)/ΘS(t). (40)
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Then, the amplitude combinations H and F become

H(t) = (ρ− ψ)w − (ρ+ ψ), (41a)
F (t) = (ρ+ ψ)w − (ρ− ψ), (41b)
w = (ΘL +ΘS)/(ΘL −ΘS), (41c)

where the ratios ρ and ψ represent vacuum regeneration.
Then experimental data on

∣∣b̄/b∣∣2 of (36a) would involve
Re(ψ − ρ), Im(ψ − ρ) and Re(ψ + ρ). Similarly data on
(ak

+/a
k
−) of (37a) would involve Reρ; data on (bk+/b

k
−) of

(37b) would involve Reψ; data on (ck+/c
k
−) of (37c) would

involve Re(ψ+ρ) and Im(ψ−ρ). Data on (Reven
+ −Reven

− )
of (38b) would involve Reρ, and data on (Rodd

+ −Rodd
− ) of

(39b) would involve Reψ. Hence, for a complete determi-
nation of ψ and ρ, one still needs an observable involving
some combination (of Imρ and Imψ) which is independent
of Im(ψ − ρ).

The required combination, Im(ψ + ρ), occurs in the
two-time observable A(t1, t2) of (27). One now gets, in-
stead of (29),

A(t1, t2) −
(

|α|2 − 1
|α|2 + 1

)

= Re
[
H(t1) +H(t2)

2

+
H(t1) −H(t2)

2

(
a(t1)b(t2) + b(t1)a(t2)
a(t2)b(t1) − a(t1)b(t2)

)

+ (F (t1) − F (t2))
b(t1)b(t2)

a(t2)b(t1) − a(t1)b(t2)

]
, (42a)

where the right-hand side is the effect of vacuum regen-
eration. Since H and F are already of first order CP -
violation, we may write, up to first order in CP -violation,

A(t1, t2) −
(

|α|2 − 1
|α|2 + 1

)

= Re

[
H(t1) +H(t2)

2

+
1

2(ΘS(t1)ΘL(t2) −ΘL(t1)ΘS(t2))

{
(H(t1) −H(t2))

× (ΘS(t1)ΘS(t2) −ΘL(t1)ΘL(t2)) + (F (t1) − F (t2))
× (ΘS(t1)ΘS(t2) +ΘL(t1)ΘL(t2)

− ΘS(t1)ΘL(t2) −ΘL(t1)ΘS(t2))
}]
, (42b)

where, for the zeroth order of CP -violation, we have used
a(t) = (1/2)(ΘS(t) + ΘL(t)), and b(t) = (1/2)(ΘS(t) −
ΘL(t)), as can be seen from the inverted version of (5).
Now the desired involvement of Im(ψ + ρ) is seen from
(41b) and (42).

We note the following for the observable A(t1, t2). As
required by quantum mechanics, one must have t1 �= t2
in (42) because the two states detected at t1 and t2 are
identical in the probability P (and similarly, P̄ ). Because

of vacuum regeneration, A(t1, t2) acquires a dependence
on t1 and t2; see (42). For LVR, A(t1, t2) and B(t) were
both constant and equal; see (29) and (30). The modified
A and B are, in general, neither constant nor equal; see
(36a) and (42). A priori, one does not expect the time
dependences of A and B to be simply related because A
involves two times and both H and F , while B involves
only one time, and only H, but not F .

We now come to the modification in the remaining
LVR test of Sect. 3, viz. the universality of the time depen-
dence of the two-time-rate R of (32) for detected channels
f and g satisfying (33). This universality is now lost. One
gets

R(f, t1; g, t2) =
1
2

∣∣∣AfAg

[
αG+ (a(t1)H(t2)b(t2)

− H(t1)b(t1)a(t2))
]

+ Āf Āg[−G+ b(t1)b(t2)(F (t2) − F (t1))]

+ Af Āg

[
βG+ (H(t2) −H(t1))b(t1)b(t2)

+ (a(t1)F (t2)b(t2) − F (t1)b(t1)a(t2))
]∣∣∣2 ,

G = a(t1)b(t2) − b(t1)a(t2). (43)

Equation (43) indicates that, in general, the appearance of
H(t1,2) and F (t1,2) does not allow for the universal time
dependence |G|2.

Needless to say, the results of Sect. 4 reduce to the
corresponding tests of Sect. 3 if the amplitudes of vacuum
regeneration would vanish.

5 Procedure required and discussion

5.1 General summary

Our purpose was to suggest an experimental programme
for determining the amplitudes DSL and DLS of vacuum
regeneration. For this, we first noted that these amplitudes
are of the first order of CP -violation; see (16). Then, by
considering some existing tests of the LVR and retaining
all CP -violations up to only the first order, we have de-
fined the required programme which is purely phenomeno-
logical. As expected, our programme reproduces the exist-
ing tests of the LVR if DSL and DLS are made to vanish.
We explicitly considered the case of neutral kaons; the
generalization to other flavours is straightforward.

Instead of DSL and DLS, our programme aims at the
equivalent time-dependent ratios ψ and ρ of (40). The im-
plicit plan is that the chosen data on decays of the neutral
flavoured mesons are to be fitted by using ψ and ρ along
with the usual full set S of parameters like the constants
η, χ, σ, δ, θ and the functions ΘS and ΘL; one is not to use
the known numerical values of the set S because those val-
ues were obtained by starting with the LVR assumption.

The functions Reψ and Reρ would thus be obtained by
the experimental data on the one-time observables

∣∣b̄/b∣∣2,
(ak

+/a
k
−), (bk+/b

k
−), (ck+/c

k
−), (Reven

+ −Reven
− ), and (Rodd

+ −
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Rodd
− ) of, respectively, (36a), (37a), (37b), (37c), (38b) and

(39b). The functions Imρ and Imψ would be determined
by the data on (ck+/c

k
−) of (37c) and the two-time ratio

A(t1, t2) of (42) coupled with (41).
The modifications in the LVR test of (32), due to

the non-zero ψ and ρ, do not allow a useful prediction
to be made because of the unknown amplitude bilinears
AfAg, Āf Āg and Af Āg.

5.2 Practical procedure

5.2.1 Functional forms for ψ and ρ

One determines ψ(T ) and ρ(T ) at a particular time t = T
by appropriate fits to data, and then varies T . The four
graphical plots of ψ and ρ as functions of t would thus
fulfill the aim of our programme. Possible functional forms
may be deduced from these plots; one need not guess the
functional forms for starting the data-fitting.

For implementing this point, it will be helpful to con-
sider additional (as compared to Sect. 3) observables
wherein the various unknowns occur in combinations dif-
ferent from the ones occurring above. In this context, the
observables not involving parameters like η and χ belong-
ing to the decay amplitudes Af are of special interest.
One may, in particular, consider [19] the (CP -violating)
asymmetry [(|ā|2 − |a|2)/(|ā|2 + |a|2)] and the asymmetry
[(|a|2 − |b|2)/(|a|2 + |b|2)] in analogy to B(t). Similarly,
the decays of the correlated C-odd state |−〉 (and the cor-
responding C-even state) to K0K̄0 and K̄0K0 may be
considered [16] in addition to K0K0 and K̄0K̄0 consid-
ered for A(t1, t2). For expressing the required amplitudes
a, ā, b and b̄ in terms of the interesting parameters, one
may use (5a) and

ā− a = (ΘS −ΘL)(δ − iθ) − (DSL +DLS),
2b = (ΘS −ΘL)(1 − σ) −DSL +DLS,

2b̄ = (ΘS −ΘL)(1 + σ) +DSL −DLS.

5.2.2 Role of ΘL,S

Out of the determinations listed in Sect. 4, that of ReH
in (36a) is the only one not requiring knowledge of ΘL,S.
The time dependence in the data on

∣∣b̄/b∣∣2 would therefore
establish non-zero vacuum regeneration, but it still falls
short of determining DLS and DSL. So one needs ΘS,L.

Retaining CP -violations up to only the first order,
(5b) easily shows that (ΘS − ΘL) equals (b + b̄), a CP -
invariant. Of course, (ΘS +ΘL) is exactly (a+ ā), another
CP -invariant; see (5a). Thus ΘS and ΘL are both CP -
invariant, and, therefore, supposedly large as compared to
DSL and DSL, which are of first order of the CP -violation.

Now compare the coupled set of (4) with the uncoupled
set of (12). The percentage error caused in the determi-
nation of the large quantities ΘS,L by dropping couplings
arising from the small quantities DSL and DLS is likely
to be small. Thus the form of (13) which arises from a

solution of (12) may be taken as a good approximation to
ΘS,L, for our purposes. To that extent, the final ψ and ρ,
determined by the use of (13), would not be exact.

Ideally, one should go for a full programme which de-
termines all the parameters (and functions) required for
fits to all data on the decays of neutral flavoured mesons;
these data include the data considered by us as only a
small subset. For such an iterative search programme, use-
ful starting values for those parameters (and functions)
which occur in our discussion could be provided by the
final values from our programme. The discussion of such
a massive programme is outside the scope of the present
paper.

5.3 Feasibility

The a priori requirement of the accuracy expected from
the experiments we propose is indicated by (16); one needs
the accuracy relevant for the known CP -violation effects
which are also of the first order.

Flavour tagging of the final neutral mesons is required
for the LVR tests of (21), (22) and (29). For the one-
time tests of (21)–(26), one needs flavour tagging for the
initial state. The two-time test of (32) which does not
require any flavour tagging is, unfortunately, not useful
for determining ψ and ρ. We merely note the usefulness of
the clean CPLEAR procedure [15] for initial state tagging
for the neutral kaon case by utilizing the reactions

p̄p → π+K−K0, π−K+K̄0,

where the charges of pions and kaons decide the neutral
kaon strangeness, assuming only strangeness conservation
in the strong interactions. For the final state tagging also,
it is advisable to use tagging based on flavour conservation
of the strong interactions, in order to avoid assumptions
which become necessary if tagging is replaced by decays
utilising weak interactions; for a recent emphasis on this
issue, see [19]. At present, such final state tagging is not
sufficiently accurate [20, 21]. For the heavier flavours, more
modern techniques like the “jet-charge method” are being
utilized; see [22] for a review.

On the whole, the flavour-tagging techniques avail-
able at present are unfortunately not as efficient as the
CPLEAR procedure [15]. We hope that the experimental
programme suggested in this paper would materialise in
the near future.
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